11 research outputs found

    Regulation of the nitric oxide synthesis and signaling by posttranslational modifications and N-end rule pathway-mediated proteolysis in Arabidopsis thaliana

    Full text link
    El óxido nítrico (NO) es una molécula gaseosa altamente reactiva que regula el crecimiento y el desarrollo de las plantas así como sus respuestas de defensa. El NO se produce principalmente a partir de nitrito por las nitrato reductasas (NRs) en balance con las nitrito reductasas (NiRs), y es percibido a través de un mecanismo en el que está involucrada la proteólisis dirigida por la secuencia aminoterminal del grupo VII de los factores de transcripción ERF (ERFVIIs). El NO ejerce especialmente su función señalizadora al causar modificaciones postraduccionales en las proteínas y alterar su función, estructura y/o estabilidad. Por estos medios y en colaboración con distintas rutas de señalización fitohormonales, el NO es capaz de regular un amplio abanico de procesos celulares en plantas, incluyendo aquellos relacionados con la adquisición de tolerancia a la congelación. Utilizando Arabidopsis thaliana como planta modelo, en este trabajo se descubrió que el NO puede regular su propia biosíntesis, puesto que las enzimas NRs y NiRs fueron reguladas por tres factores principales: señalización inducida por nitrato y controlada por la función del factor de transcripción NIN-like protein 7 (NLP7), la proteólisis dirigida por la secuencia aminoterminal, y la degradación mediada por el proteasoma, probablemente ocasionada por modificaciones postraduccionales relacionadas con el NO. Adicionalmente, se descubrió que el factor de transcripción ERFVII RAP2.3 regula negativamente tanto la biosíntesis de NO como las respuestas que desencadena a través de un mecanismo similar a un reóstato en el que están involucradas ramas específicas relacionadas con el NO de las rutas de señalización de jasmonato y ácido abscísico. Por otro lado, una caracterización metabolómica y transcriptómica combinada de plantas mutantes nia1,2noa1-2 deficientes en NO y plantas fumigadas con NO permitió desentrañar una serie de mecanismos que están controlados por NO. En primer lugar, la percepción de NO en los hipocotilos requeriría varias hormonas para ser completada, como fue confirmado por los rastreos de acortamiento de hipocotilo por NO con mutantes relacionados con hormonas y la colección TRANSPLANTA de líneas transgénicas que expresan condicionalmente factores de transcripción de Arabidopsis. En segundo lugar, dosis elevadas de NO causan una reprogramación masiva aunque transitoria de los metabolismos primario y secundario, incluyendo la alteración del estado redox celular, la alteración de la permeabilidad de estructuras lipídicas y el recambio de proteínas y ácidos nucleicos. Por último, se descubrió que el NO previene el desarrollo de la tolerancia a congelación bajo condiciones no estresantes de temperatura, mientras que resulta esencial para la aclimatación a frío desencadenada por bajas temperaturas que conduce a una tolerancia mejorada a congelación. El NO conseguiría esta modulación afinada de la activación de respuestas relacionadas con frío al coordinar la acumulación de diferentes metabolitos y hormonas. En conjunto, este trabajo arroja luz sobre los mecanismos mediante los cuales, al interactuar con varias rutas señalizadoras y metabólicas, el NO puede regular distintos procesos clave de la fisiología vegetal.L'òxid nítric (NO) és una molècula gasosa altament reactiva que regula el creixement i desenvolupament de les plantes així com les seves respostes de defensa. El NO es produeix principalment a partir de nitrit per les nitrat reductases (NRs) en balanç amb les nitrit reductases (NiRs), i és percebut a traves d'un mecanisme que inclou la proteòlisi dirigida per la seqüència aminoterminal del grup VII dels factors de transcripció ERF (ERFVII). El NO exerceix la seva funció senyalitzadora majoritàriament al provocar modificacions postraduccionals en les proteïnes i alterar la seva funció, estructura i/o estabilitat. Mitjançant aquestes modificacions i en col·laboració amb distintes rutes de senyalització fitohormonals, el NO es capaç de regular un ampli espectre de processos cel·lulars en plantes, inclosos aquells relacionats amb l'adquisició de tolerància a la congelació. Emprant Arabidopsis thaliana com a planta model, en aquest treball es va descobrir que el NO regula la seva pròpia biosíntesi, donat que els enzims NRs i NiRs foren regulades per tres factors principals: senyalització induïda per nitrat i controlada per la funció del factor de transcripció NIN-like protein 7 (NLP7), la proteòlisi dirigida per la seqüència aminoterminal, i la degradació mitjançant el proteasoma, probablement a causa de modificacions postraduccionals relacionades amb el NO. A més, es va descobrir que el factor de transcripció ERFVII RAP2.3 regula negativament tant la biosíntesi de NO com les respostes que desencadena aquest a través d'un mecanisme similar a un reòstat en el que estan involucrades branques específiques de les rutes de senyalització de jasmonat i àcid abscísic relacionades amb el NO. Per altre costat, una caracterització metabolòmica i transcriptòmica combinada de plantes mutants nia1,2noa1-2 deficients en NO i plantes fumigades amb NO va permetre desentranyar una sèrie de mecanismes que estan controlats per NO. En primer lloc, la percepció de NO en els hipocòtils requeriria de varies hormones, com fou confirmat pels rastrejos d'acurtament d'hipocòtil per NO amb mutants relacionats amb hormones i la col·lecció TRANSPLANTA de línies transgèniques d'expressió condicional de factors de transcripció d'Arabidopsis. En segon lloc, dosis elevades de NO causen una reprogramació massiva, encara que transitòria, dels metabolismes primari i secundari, incloent l'alteració de l'estat redox cel·lular, canvis en la permeabilitat de estructures lipídiques i el recanvi de proteïnes i àcids nucleics. Per últim, es va descobrir que el NO prevé el desenvolupament de la tolerància a congelació en condicions no estressants de temperatura, mentre que resulta essencial per a l'aclimatació a fred induïda per baixes temperatures que condueix a una tolerància millorada a congelació. El NO aconseguiria aquesta modulació minuciosa de l'activació de les respostes relacionades amb fred al coordinar l'acumulació de diferents metabòlits i hormones. En conjunt, aquest treball clarifica els mecanismes pels quals el NO pot regular distints processos clau de la fisiologia vegetal al interactuar amb varies rutes senyalitzadores i metabòliques.Nitric oxide (NO) is a highly reactive gaseous molecule that regulates plant growth and development as well as defense responses. NO is mainly produced from nitrite by nitrate reductases (NRs) in balance with nitrite reductases (NiRs), and is sensed through a mechanism involving the N-end rule pathway-mediated proteolysis of the group VII of ERF transcription factors (ERFVIIs). NO especially exerts its signaling function by triggering post-translational modifications in proteins and altering their function, structure and/or stability. By these means and in collaboration with different phytohormone signaling pathways, NO is capable of regulating a wide array of cell processes in plants, including those related to the acquirement of freezing tolerance. By using Arabidopsis thaliana as model plant, during the development of this work it was found that NO can regulate its own biosynthesis, as NRs and NiR enzymes were regulated by three main factors: nitrate-induced signaling controlled by the function of the NIN-like protein 7 (NLP7) transcription factor, N-end rule proteolytic pathway, and proteasome-mediated degradation, likely triggered by NO-related post-translational modifications. In addition, the ERFVII transcription factor RAP2.3 was found to negatively regulate both the NO biosynthesis and their triggered responses through a rheostat-like mechanism that involves specific NO-related branches of jasmonate and abscisic acid signaling pathways. On the other hand, a combined metabolomic and transcriptomic characterization of NO-deficient nia1,2noa1-2 mutant plants and NO-fumigated plants allowed to unravel a number of mechanisms that are controlled by NO. First, NO perception in hypocotyls would require various hormones to be fulfilled as it was confirmed by NO-triggered hypocotyl shortening screenings with hormone-related mutants and the TRANSPLANTA collection of transgenic lines conditionally expressing Arabidopsis transcription factors. Second, high NO doses caused a massive but transient reprogramming of primary and secondary metabolism, including alteration of the cellular redox status, alteration of the permeability of lipidic structures or turnover of proteins and nucleic acids. Lastly, NO was found to prevent the development of freezing tolerance under non-stress temperature conditions, while being essential for the low temperature stress-triggered cold acclimation that leads to enhanced freezing tolerance. NO would achieve this fine-tuned modulation of the activation of the cold-related responses by coordinating the accumulation of different metabolites and hormones. Altogether, this work sheds light on the mechanisms by which, by interacting with various signaling and metabolic pathways, NO can regulate several key processes of plant physiology.Costa Broseta, Á. (2018). Regulation of the nitric oxide synthesis and signaling by posttranslational modifications and N-end rule pathway-mediated proteolysis in Arabidopsis thaliana [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/114825TESI

    Present knowledge and controversies, deficiencies and misconceptions on nitric oxide synthesis, sensing and signaling in plants

    Full text link
    [EN] After 30 years of intensive work, nitric oxide (NO) has just started to be characterized as a relevant regulatory molecule on plant development and responses to stress. Its reactivity as a free radical determines its mode of action as an inducer of posttranslational modifications of key target proteins through cysteine S-nitrosylation and tyrosine nitration. Many of the NO-triggered regulatory actions are exerted in tight coordination with phytohormone signaling. This review not only summarizes and updates the information accumulated on how NO is synthesized, sensed, and transduced in plants but also makes emphasis on controversies, deficiencies, and misconceptions that are hampering our present knowledge on the biology of NO in plants. The development of noninvasive accurate tools for the endogenous NO quantitation as well as the implementation of genetic approaches that overcome misleading pharmacological experiments will be critical for getting significant advances in better knowledge of NO homeostasis and regulatory actions in plants.Ministerio de Ciencia e Innovacion, Grant/Award Numbers: BIO2014-56067-P and BIO2017-82945-P; Government of Spain MINECO, Grant/Award Numbers: BIO2017-82945-P and BIO2014-56067-PLeon Ramos, J.; Costa-Broseta, Á. (2020). Present knowledge and controversies, deficiencies and misconceptions on nitric oxide synthesis, sensing and signaling in plants. Plant Cell & Environment. 43(1):1-15. https://doi.org/10.1111/pce.13617S11543

    RAP2.3 negatively regulates nitric oxide biosynthesis and related responses through a rheostat-like mechanism in Arabidopsis

    Full text link
    [EN] Nitric oxide (NO) is sensed through a mechanism involving the degradation of group-VII ERF transcription factors (ERFVIIs) that is mediated by the N-degron pathway. However, the mechanisms regulating NO homeostasis and downstream responses remain mostly unknown. To explore the role of ERFVIIs in regulating NO production and signaling, genome-wide transcriptome analyses were performed on single and multiple erfvii mutants of Arabidopsis following exposure to NO. Transgenic plants overexpressing degradable or non-degradable versions of RAP2.3, one of the five ERFVIIs, were also examined. Enhanced RAP2.3 expression attenuated the changes in the transcriptome upon exposure to NO, and thereby acted as a brake for NO-triggered responses that included the activation of jasmonate and ABA signaling. The expression of non-degradable RAP2.3 attenuated NO biosynthesis in shoots but not in roots, and released the NO-triggered inhibition of hypocotyl and root elongation. In the guard cells of stomata, the control of NO accumulation depended on PRT6-triggered degradation of RAP2.3 more than on RAP2.3 levels. RAP2.3 therefore seemed to work as a molecular rheostat controlling NO homeostasis and signaling. Its function as a brake for NO signaling was released upon NO-triggered PRT6-mediated degradation, thus allowing the inhibition of growth, and the potentiation of jasmonate- and ABA-related signaling.We would like to acknowledge Lorena Latorre (Genomic Service at IBMCP) for her support in the hybridizing Agilent microarrays. This work was supported by grants BIO2014-56067-P and BIO2017-82945-P from the Spanish Ministry of Economy, Industry and Competitiveness, and by FEDER funds. The authors declare no conflicts of interest.Leon Ramos, J.; Costa-Broseta, Á.; Castillo López Del Toro, MC. (2020). RAP2.3 negatively regulates nitric oxide biosynthesis and related responses through a rheostat-like mechanism in Arabidopsis. Journal of Experimental Botany. 71(10):3157-3171. https://doi.org/10.1093/jxb/eraa069S315731717110Abbas, M., Berckhan, S., Rooney, D. J., Gibbs, D. J., Vicente Conde, J., Sousa Correia, C., … Holdsworth, M. J. (2015). Oxygen Sensing Coordinates Photomorphogenesis to Facilitate Seedling Survival. Current Biology, 25(11), 1483-1488. doi:10.1016/j.cub.2015.03.060Arasimowicz‐Jelonek, M., & Floryszak‐Wieczorek, J. (2013). Nitric oxide: an effective weapon of the plant or the pathogen? Molecular Plant Pathology, 15(4), 406-416. doi:10.1111/mpp.12095Astier, J., Gross, I., & Durner, J. (2017). Nitric oxide production in plants: an update. Journal of Experimental Botany, 69(14), 3401-3411. doi:10.1093/jxb/erx420Astier, J., & Lindermayr, C. (2012). Nitric Oxide-Dependent Posttranslational Modification in Plants: An Update. International Journal of Molecular Sciences, 13(12), 15193-15208. doi:10.3390/ijms131115193Baxter-Burrell, A., Yang, Z., Springer, P. S., & Bailey-Serres, J. (2002). RopGAP4-Dependent Rop GTPase Rheostat Control of Arabidopsis Oxygen Deprivation Tolerance. Science, 296(5575), 2026-2028. doi:10.1126/science.1071505Beligni, M. V., & Lamattina, L. (1999). Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta, 208(3), 337-344. doi:10.1007/s004250050567Beligni, M. V., & Lamattina, L. (2000). Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta, 210(2), 215-221. doi:10.1007/pl00008128Bu, Q., Jiang, H., Li, C.-B., Zhai, Q., Zhang, J., Wu, X., … Li, C. (2008). Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Research, 18(7), 756-767. doi:10.1038/cr.2008.53Bui, L. T., Giuntoli, B., Kosmacz, M., Parlanti, S., & Licausi, F. (2015). Constitutively expressed ERF-VII transcription factors redundantly activate the core anaerobic response in Arabidopsis thaliana. Plant Science, 236, 37-43. doi:10.1016/j.plantsci.2015.03.008Buttner, M., & Singh, K. B. (1997). Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proceedings of the National Academy of Sciences, 94(11), 5961-5966. doi:10.1073/pnas.94.11.5961Castillo, M.-C., Coego, A., Costa-Broseta, Á., & León, J. (2018). Nitric oxide responses in Arabidopsis hypocotyls are mediated by diverse phytohormone pathways. Journal of Experimental Botany, 69(21), 5265-5278. doi:10.1093/jxb/ery286Castillo, M.-C., Lozano-Juste, J., González-Guzmán, M., Rodriguez, L., Rodriguez, P. L., & León, J. (2015). Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Science Signaling, 8(392). doi:10.1126/scisignal.aaa7981Chen, H.-J., Fu, T.-Y., Yang, S.-L., & Hsieh, H.-L. (2018). FIN219/JAR1 and cryptochrome1 antagonize each other to modulate photomorphogenesis under blue light in Arabidopsis. PLOS Genetics, 14(3), e1007248. doi:10.1371/journal.pgen.1007248Cheng, C., Wang, Z., Ren, Z., Zhi, L., Yao, B., Su, C., … Li, X. (2017). SCFAtPP2-B11 modulates ABA signaling by facilitating SnRK2.3 degradation in Arabidopsis thaliana. PLOS Genetics, 13(8), e1006947. doi:10.1371/journal.pgen.1006947Coego, A., Brizuela, E., Castillejo, P., Ruíz, S., Koncz, C., … del Pozo, J. C. (2014). The TRANSPLANTA collection of Arabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression. The Plant Journal, 77(6), 944-953. doi:10.1111/tpj.12443Dissmeyer, N., Rivas, S., & Graciet, E. (2017). Life and death of proteins after protease cleavage: protein degradation by the N-end rule pathway. New Phytologist, 218(3), 929-935. doi:10.1111/nph.14619Dong, C.-J., & Liu, J.-Y. (2010). The Arabidopsis EAR-motif-containing protein RAP2.1 functions as an active transcriptional repressor to keep stress responses under tight control. BMC Plant Biology, 10(1), 47. doi:10.1186/1471-2229-10-47Du, J., Li, M., Kong, D., Wang, L., Lv, Q., Wang, J., … He, Y. (2013). Nitric oxide induces cotyledon senescence involving co-operation of the NES1/MAD1 and EIN2-associated ORE1 signalling pathways in Arabidopsis. Journal of Experimental Botany, 65(14), 4051-4063. doi:10.1093/jxb/ert429Fancy, N. N., Bahlmann, A., & Loake, G. J. (2016). Nitric oxide function in plant abiotic stress. Plant, Cell & Environment, 40(4), 462-472. doi:10.1111/pce.12707Feng, C., Chen, Y., Wang, C., Kong, Y., Wu, W., & Chen, Y. (2014). Arabidopsis RAV 1 transcription factor, phosphorylated by S n RK 2 kinases, regulates the expression of ABI 3 , ABI 4 , and ABI 5 during seed germination and early seedling development. The Plant Journal, 80(4), 654-668. doi:10.1111/tpj.12670Foudree, A., Aluru, M., & Rodermel, S. (2010). PDS activity acts as a rheostat of retrograde signaling during early chloroplast biogenesis. Plant Signaling & Behavior, 5(12), 1629-1632. doi:10.4161/psb.5.12.13773Franco-Zorrilla, J. M., López-Vidriero, I., Carrasco, J. L., Godoy, M., Vera, P., & Solano, R. (2014). DNA-binding specificities of plant transcription factors and their potential to define target genes. Proceedings of the National Academy of Sciences, 111(6), 2367-2372. doi:10.1073/pnas.1316278111Gasch, P., Fundinger, M., Müller, J. T., Lee, T., Bailey-Serres, J., & Mustroph, A. (2015). Redundant ERF-VII Transcription Factors Bind to an Evolutionarily Conserved cis-Motif to Regulate Hypoxia-Responsive Gene Expression in Arabidopsis. The Plant Cell, 28(1), 160-180. doi:10.1105/tpc.15.00866Gibbs, D. J., Bacardit, J., Bachmair, A., & Holdsworth, M. J. (2014). The eukaryotic N-end rule pathway: conserved mechanisms and diverse functions. Trends in Cell Biology, 24(10), 603-611. doi:10.1016/j.tcb.2014.05.001Gibbs, D. J., Conde, J. V., Berckhan, S., Prasad, G., Mendiondo, G. M., & Holdsworth, M. J. (2015). Group VII Ethylene Response Factors Coordinate Oxygen and Nitric Oxide Signal Transduction and Stress Responses in Plants. Plant Physiology, 169(1), 23-31. doi:10.1104/pp.15.00338Gibbs, D. J., Lee, S. C., Md Isa, N., Gramuglia, S., Fukao, T., Bassel, G. W., … Holdsworth, M. J. (2011). Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature, 479(7373), 415-418. doi:10.1038/nature10534Gibbs, D. J., Md Isa, N., Movahedi, M., Lozano-Juste, J., Mendiondo, G. M., Berckhan, S., … Holdsworth, M. J. (2014). Nitric Oxide Sensing in Plants Is Mediated by Proteolytic Control of Group VII ERF Transcription Factors. Molecular Cell, 53(3), 369-379. doi:10.1016/j.molcel.2013.12.020Guo, F.-Q., Okamoto, M., & Crawford, N. M. (2003). Identification of a Plant Nitric Oxide Synthase Gene Involved in Hormonal Signaling. Science, 302(5642), 100-103. doi:10.1126/science.1086770Gupta, K. J., Fernie, A. R., Kaiser, W. M., & van Dongen, J. T. (2011). On the origins of nitric oxide. Trends in Plant Science, 16(3), 160-168. doi:10.1016/j.tplants.2010.11.007Hartman, S., Liu, Z., van Veen, H., Vicente, J., Reinen, E., Martopawiro, S., … Voesenek, L. A. C. J. (2019). Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nature Communications, 10(1). doi:10.1038/s41467-019-12045-4He, Y., Tang, R.-H., Hao, Y., Stevens, R. D., Cook, C. W., Ahn, S. M., … Pei, Z.-M. (2004). Nitric Oxide Represses the Arabidopsis Floral Transition. Science, 305(5692), 1968-1971. doi:10.1126/science.1098837Imran, Q. M., Hussain, A., Lee, S.-U., Mun, B.-G., Falak, N., Loake, G. J., & Yun, B.-W. (2018). Transcriptome profile of NO-induced Arabidopsis transcription factor genes suggests their putative regulatory role in multiple biological processes. Scientific Reports, 8(1). doi:10.1038/s41598-017-18850-5Kagale, S., & Rozwadowski, K. (2010). Small yet effective. Plant Signaling & Behavior, 5(6), 691-694. doi:10.4161/psb.5.6.11576Kagale, S., & Rozwadowski, K. (2011). EAR motif-mediated transcriptional repression in plants. Epigenetics, 6(2), 141-146. doi:10.4161/epi.6.2.13627Kumari, A., Pathak, P. K., Bulle, M., Igamberdiev, A. U., & Gupta, K. J. (2019). Alternative oxidase is an important player in the regulation of nitric oxide levels under normoxic and hypoxic conditions in plants. Journal of Experimental Botany, 70(17), 4345-4354. doi:10.1093/jxb/erz160León, J., Castillo, M. C., Coego, A., Lozano-Juste, J., & Mir, R. (2013). Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress. Journal of Experimental Botany, 65(4), 907-921. doi:10.1093/jxb/ert454León, J., Costa, Á., & Castillo, M.-C. (2016). Nitric oxide triggers a transient metabolic reprogramming in Arabidopsis. Scientific Reports, 6(1). doi:10.1038/srep37945Li, H.-Y., Xiao, S., & Chye, M.-L. (2008). Ethylene- and pathogen-inducible Arabidopsis acyl-CoA-binding protein 4 interacts with an ethylene-responsive element binding protein. Journal of Experimental Botany, 59(14), 3997-4006. doi:10.1093/jxb/ern241Licausi, F., Kosmacz, M., Weits, D. A., Giuntoli, B., Giorgi, F. M., Voesenek, L. A. C. J., … van Dongen, J. T. (2011). Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature, 479(7373), 419-422. doi:10.1038/nature10536Liu, F., & Guo, F.-Q. (2013). Nitric Oxide Deficiency Accelerates Chlorophyll Breakdown and Stability Loss of Thylakoid Membranes during Dark-Induced Leaf Senescence in Arabidopsis. PLoS ONE, 8(2), e56345. doi:10.1371/journal.pone.0056345Lozano-Juste, J., & Leoݩn, J. (2009). Enhanced Abscisic Acid-Mediated Responses innia1nia2noa1-2Triple Mutant Impaired in NIA/NR- and AtNOA1-Dependent Nitric Oxide Biosynthesis in Arabidopsis. Plant Physiology, 152(2), 891-903. doi:10.1104/pp.109.148023Lozano-Juste, J., & León, J. (2011). Nitric Oxide Regulates DELLA Content and PIF Expression to Promote Photomorphogenesis in Arabidopsis  . Plant Physiology, 156(3), 1410-1423. doi:10.1104/pp.111.177741Manjunatha, G., Lokesh, V., & Neelwarne, B. (2010). Nitric oxide in fruit ripening: Trends and opportunities. Biotechnology Advances, 28(4), 489-499. doi:10.1016/j.biotechadv.2010.03.001La Rosa, N. M. -d., Sotillo, B., Miskolczi, P., Gibbs, D. J., Vicente, J., Carbonero, P., … Blazquez, M. A. (2014). Large-Scale Identification of Gibberellin-Related Transcription Factors Defines Group VII ETHYLENE RESPONSE FACTORS as Functional DELLA Partners. PLANT PHYSIOLOGY, 166(2), 1022-1032. doi:10.1104/pp.114.244723Mur, L. A. J., Carver, T. L. W., & Prats, E. (2005). NO way to live; the various roles of nitric oxide in plant–pathogen interactions. Journal of Experimental Botany, 57(3), 489-505. doi:10.1093/jxb/erj052Nakano, T., Suzuki, K., Fujimura, T., & Shinshi, H. (2006). Genome-Wide Analysis of the ERF Gene Family in Arabidopsis and Rice. Plant Physiology, 140(2), 411-432. doi:10.1104/pp.105.073783Ogawa, T., Pan, L., Kawai-Yamada, M., Yu, L.-H., Yamamura, S., Koyama, T., … Uchimiya, H. (2005). Functional Analysis of Arabidopsis Ethylene-Responsive Element Binding Protein Conferring Resistance to Bax and Abiotic Stress-Induced Plant Cell Death. Plant Physiology, 138(3), 1436-1445. doi:10.1104/pp.105.063586Ohta, M., Matsui, K., Hiratsu, K., Shinshi, H., & Ohme-Takagi, M. (2001). Repression Domains of Class II ERF Transcriptional Repressors Share an Essential Motif for Active Repression. The Plant Cell, 13(8), 1959-1968. doi:10.1105/tpc.010127Papdi, C., Pérez-Salamó, I., Joseph, M. P., Giuntoli, B., Bögre, L., Koncz, C., & Szabados, L. (2015). The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor VII genesRAP2.12,RAP2.2andRAP2.3. The Plant Journal, 82(5), 772-784. doi:10.1111/tpj.12848Puerta, M. L., Shukla, V., Dalle Carbonare, L., Weits, D. A., Perata, P., Licausi, F., & Giuntoli, B. (2019). A Ratiometric Sensor Based on Plant N-Terminal Degrons Able to Report Oxygen Dynamics in Saccharomyces cerevisiae. Journal of Molecular Biology, 431(15), 2810-2820. doi:10.1016/j.jmb.2019.05.023Siddiqui, M. H., Al-Whaibi, M. H., & Basalah, M. O. (2010). Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma, 248(3), 447-455. doi:10.1007/s00709-010-0206-9Singh, P. K., Indoliya, Y., Chauhan, A. S., Singh, S. P., Singh, A. P., Dwivedi, S., … Chakrabarty, D. (2017). Nitric oxide mediated transcriptional modulation enhances plant adaptive responses to arsenic stress. Scientific Reports, 7(1). doi:10.1038/s41598-017-03923-2Staswick, P. E., & Tiryaki, I. (2004). The Oxylipin Signal Jasmonic Acid Is Activated by an Enzyme That Conjugates It to Isoleucine in Arabidopsis[W]. The Plant Cell, 16(8), 2117-2127. doi:10.1105/tpc.104.023549Staswick, P. E., Tiryaki, I., & Rowe, M. L. (2002). Jasmonate Response Locus JAR1 and Several Related Arabidopsis Genes Encode Enzymes of the Firefly Luciferase Superfamily That Show Activity on Jasmonic, Salicylic, and Indole-3-Acetic Acids in an Assay for Adenylation. The Plant Cell, 14(6), 1405-1415. doi:10.1105/tpc.000885Thomas, D. D. (2015). Breathing new life into nitric oxide signaling: A brief overview of the interplay between oxygen and nitric oxide. Redox Biology, 5, 225-233. doi:10.1016/j.redox.2015.05.002Tischer, S. V., Wunschel, C., Papacek, M., Kleigrewe, K., Hofmann, T., Christmann, A., & Grill, E. (2017). Combinatorial interaction network of abscisic acid receptors and coreceptors fromArabidopsis thaliana. Proceedings of the National Academy of Sciences, 114(38), 10280-10285. doi:10.1073/pnas.1706593114Tsai, Y.-C., Delk, N. A., Chowdhury, N. I., & Braam, J. (2007). Arabidopsis Potential Calcium Sensors Regulate Nitric Oxide Levels and the Transition to Flowering. Plant Signaling & Behavior, 2(6), 446-454. doi:10.4161/psb.2.6.4695Tsutsui, T., Kato, W., Asada, Y., Sako, K., Sato, T., Sonoda, Y., … Yamaguchi, J. (2009). DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis. Journal of Plant Research, 122(6), 633-643. doi:10.1007/s10265-009-0252-6Van Verk, M. C., Bol, J. F., & Linthorst, H. J. (2011). WRKY Transcription Factors Involved in Activation of SA Biosynthesis Genes. BMC Plant Biology, 11(1). doi:10.1186/1471-2229-11-89Varshavsky, A. (2019). N-degron and C-degron pathways of protein degradation. Proceedings of the National Academy of Sciences, 116(2), 358-366. doi:10.1073/pnas.1816596116Vicente, J., Mendiondo, G. M., Movahedi, M., Peirats-Llobet, M., Juan, Y., Shen, Y., … Holdsworth, M. J. (2017). The Cys-Arg/N-End Rule Pathway Is a General Sensor of Abiotic Stress in Flowering Plants. Current Biology, 27(20), 3183-3190.e4. doi:10.1016/j.cub.2017.09.006Wang, P., Zhu, J.-K., & Lang, Z. (2015). Nitric oxide suppresses the inhibitory effect of abscisic acid on seed germination by S-nitrosylation of SnRK2 proteins. Plant Signaling & Behavior, 10(6), e1031939. doi:10.1080/15592324.2015.1031939Wei, C.-Q., Chien, C.-W., Ai, L.-F., Zhao, J., Zhang, Z., Li, K. H., … Wang, Z.-Y. (2016). The Arabidopsis B-box protein BZS1/BBX20 interacts with HY5 and mediates strigolactone regulation of photomorphogenesis. Journal of Genetics and Genomics, 43(9), 555-563. doi:10.1016/j.jgg.2016.05.007White, M. D., Kamps, J. J. A. G., East, S., Taylor Kearney, L. J., & Flashman, E. (2018). The plant cysteine oxidases from Arabidopsis thaliana are kinetically tailored to act as oxygen sensors. Journal of Biological Chemistry, 293(30), 11786-11795. doi:10.1074/jbc.ra118.003496Williams, B. P., Pignatta, D., Henikoff, S., & Gehring, M. (2015). Methylation-Sensitive Expression of a DNA Demethylase Gene Serves As an Epigenetic Rheostat. PLOS Genetics, 11(3), e1005142. doi:10.1371/journal.pgen.1005142Zhang, Y., Wang, L., Liu, Y., Zhang, Q., Wei, Q., & Zhang, W. (2006). Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta, 224(3), 545-555. doi:10.1007/s00425-006-0242-zZottini, M., Costa, A., De Michele, R., Ruzzene, M., Carimi, F., & Lo Schiavo, F. (2007). Salicylic acid activates nitric oxide synthesis in Arabidopsis. Journal of Experimental Botany, 58(6), 1397-1405. doi:10.1093/jxb/erm00

    Nitrite Reductase 1 Is a Target of Nitric Oxide-Mediated Post-Translational Modifications and Controls Nitrogen Flux and Growth in Arabidopsis

    Full text link
    [EN] Plant growth is the result of the coordinated photosynthesis-mediated assimilation of oxidized forms of C, N and S. Nitrate is the predominant N source in soils and its reductive assimilation requires the successive activities of soluble cytosolic NADH-nitrate reductases (NR) and plastid stroma ferredoxin-nitrite reductases (NiR) allowing the conversion of nitrate to nitrite and then to ammonium. However, nitrite, instead of being reduced to ammonium in plastids, can be reduced to nitric oxide (NO) in mitochondria, through a process that is relevant under hypoxic conditions, or in the cytoplasm, through a side-reaction catalyzed by NRs. We use a loss-of-function approach, based on CRISPR/Cas9-mediated genetic edition, and gain-of-function, using transgenic overexpressing HA-tagged Arabidopsis NiR1 to characterize the role of this enzyme in controlling plant growth, and to propose that the NO-related post-translational modifications, by S-nitrosylation of key C residues, might inactivate NiR1 under stress conditions. NiR1 seems to be a key target in regulating nitrogen assimilation and NO homeostasis, being relevant to the control of both plant growth and performance under stress conditions. Because most higher plants including crops have a single NiR, the modulation of its function might represent a relevant target for agrobiotechnological purposes.This research was funded by BIO2014-56067-P and BIO2017-82945-P grants from the Spanish Ministry of Economy, Industry and Competitiveness and Fondo Europeo de Desarrollo Regional (FEDER) funds.Costa-Broseta, Á.; Castillo López Del Toro, MC.; Leon Ramos, J. (2020). Nitrite Reductase 1 Is a Target of Nitric Oxide-Mediated Post-Translational Modifications and Controls Nitrogen Flux and Growth in Arabidopsis. International Journal of Molecular Sciences. 21(19):1-13. https://doi.org/10.3390/ijms211972701132119Solomonson, L. P., & Barber, M. J. (1990). Assimilatory Nitrate Reductase: Functional Properties and Regulation. Annual Review of Plant Physiology and Plant Molecular Biology, 41(1), 225-253. doi:10.1146/annurev.pp.41.060190.001301Knaff, D. B., & Hirasawa, M. (1991). Ferredoxin-dependent chloroplast enzymes. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1056(2), 93-125. doi:10.1016/s0005-2728(05)80277-4Wang, R., Xing, X., & Crawford, N. (2007). Nitrite Acts as a Transcriptome Signal at Micromolar Concentrations in Arabidopsis Roots. Plant Physiology, 145(4), 1735-1745. doi:10.1104/pp.107.108944Tanaka, S., Ida, S., Irifune, K., Oeda, K., & Morikawa, H. (1994). Nucleotide sequence of a gene for nitrite reductase from Arabidopsis thaliana. DNA Sequence, 5(1), 57-61. doi:10.3109/10425179409039705LEA, P. J., & MIFLIN, B. J. (1974). Alternative route for nitrogen assimilation in higher plants. Nature, 251(5476), 614-616. doi:10.1038/251614a0Gupta, K. J., & Igamberdiev, A. U. (2011). The anoxic plant mitochondrion as a nitrite: NO reductase. Mitochondrion, 11(4), 537-543. doi:10.1016/j.mito.2011.03.005Rockel, P., Strube, F., Rockel, A., Wildt, J., & Kaiser, W. M. (2002). Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. Journal of Experimental Botany, 53(366), 103-110. doi:10.1093/jexbot/53.366.103Bender, D., & Schwarz, G. (2018). Nitrite-dependent nitric oxide synthesis by molybdenum enzymes. FEBS Letters, 592(12), 2126-2139. doi:10.1002/1873-3468.13089Kolbert, Z., Barroso, J. B., Brouquisse, R., Corpas, F. J., Gupta, K. J., Lindermayr, C., … Hancock, J. T. (2019). A forty year journey: The generation and roles of NO in plants. Nitric Oxide, 93, 53-70. doi:10.1016/j.niox.2019.09.006Astier, J., & Lindermayr, C. (2012). Nitric Oxide-Dependent Posttranslational Modification in Plants: An Update. International Journal of Molecular Sciences, 13(12), 15193-15208. doi:10.3390/ijms131115193Jain, P., & Bhatla, S. C. (2018). Molecular mechanisms accompanying nitric oxide signalling through tyrosine nitration and S-nitrosylation of proteins in plants. Functional Plant Biology, 45(2), 70. doi:10.1071/fp16279Calatrava, V., Chamizo-Ampudia, A., Sanz-Luque, E., Ocaña-Calahorro, F., Llamas, A., Fernandez, E., & Galvan, A. (2017). How Chlamydomonas handles nitrate and the nitric oxide cycle. Journal of Experimental Botany, 68(10), 2593-2602. doi:10.1093/jxb/erw507De Montaigu, A., Sanz-Luque, E., Galván, A., & Fernández, E. (2010). A Soluble Guanylate Cyclase Mediates Negative Signaling by Ammonium on Expression of Nitrate Reductase in Chlamydomonas  . The Plant Cell, 22(5), 1532-1548. doi:10.1105/tpc.108.062380Kim, J. Y., Kwon, Y. J., Kim, S.-I., Kim, D. Y., Song, J. T., & Seo, H. S. (2016). Ammonium Inhibits Chromomethylase 3-Mediated Methylation of the Arabidopsis Nitrate Reductase Gene NIA2. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.01161Castillo, M.-C., Coego, A., Costa-Broseta, Á., & León, J. (2018). Nitric oxide responses in Arabidopsis hypocotyls are mediated by diverse phytohormone pathways. Journal of Experimental Botany, 69(21), 5265-5278. doi:10.1093/jxb/ery286Wang, J., Wang, Y., Lv, Q., Wang, L., Du, J., Bao, F., & He, Y.-K. (2017). Nitric oxide modifies root growth by S-nitrosylation of plastidial glyceraldehyde-3-phosphate dehydrogenase. Biochemical and Biophysical Research Communications, 488(1), 88-94. doi:10.1016/j.bbrc.2017.05.012Chen, Z. J., & Sun, L. J. (2009). Nonproteolytic Functions of Ubiquitin in Cell Signaling. Molecular Cell, 33(3), 275-286. doi:10.1016/j.molcel.2009.01.014Thrower, J. S. (2000). Recognition of the polyubiquitin proteolytic signal. The EMBO Journal, 19(1), 94-102. doi:10.1093/emboj/19.1.94Chu, C.-C., & Li, H. (2018). Developmental regulation of protein import into plastids. Photosynthesis Research, 138(3), 327-334. doi:10.1007/s11120-018-0546-4Hirasawa, M., Tollin, G., Salamon, Z., & Knaff, D. B. (1994). Transient kinetic and oxidation-reduction studies of spinach ferrodoxin: nitrate oxidoreductase. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1185(3), 336-345. doi:10.1016/0005-2728(94)90249-6Hirasawa, M., Tripathy, J. N., Somasundaram, R., Johnson, M. K., Bhalla, M., Allen, J. P., & Knaff, D. B. (2009). The Interaction of Spinach Nitrite Reductase with Ferredoxin: A Site-Directed Mutation Study. Molecular Plant, 2(3), 407-415. doi:10.1093/mp/ssn098Y., M.-G.-T., P., R., T., M., I., Q., M., L., W., K., & J., M.-G. (2002). Nitrite accumulation and nitric oxide emission in relation to cellular signaling in nitrite reductase antisense tobacco. Planta, 215(5), 708-715. doi:10.1007/s00425-002-0816-3Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.xChiu, J., Tillett, D., Dawes, I. W., & March, P. E. (2008). Site-directed, Ligase-Independent Mutagenesis (SLIM) for highly efficient mutagenesis of plasmids greater than 8kb. Journal of Microbiological Methods, 73(2), 195-198. doi:10.1016/j.mimet.2008.02.013Wang, Z.-P., Xing, H.-L., Dong, L., Zhang, H.-Y., Han, C.-Y., Wang, X.-C., & Chen, Q.-J. (2015). Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biology, 16(1). doi:10.1186/s13059-015-0715-0Davenport, S., Le Lay, P., & Sanchez-Tamburrrino, J. P. (2015). Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase. Plant Physiology and Biochemistry, 97, 96-107. doi:10.1016/j.plaphy.2015.09.013Takahashi, M., Sasaki, Y., Ida, S., & Morikawa, H. (2001). Nitrite Reductase Gene Enrichment Improves Assimilation of NO2 in Arabidopsis. Plant Physiology, 126(2), 731-741. doi:10.1104/pp.126.2.731Castillo, M.-C., Lozano-Juste, J., González-Guzmán, M., Rodriguez, L., Rodriguez, P. L., & León, J. (2015). Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Science Signaling, 8(392). doi:10.1126/scisignal.aaa7981Guo, F.-Q., Okamoto, M., & Crawford, N. M. (2003). Identification of a Plant Nitric Oxide Synthase Gene Involved in Hormonal Signaling. Science, 302(5642), 100-103. doi:10.1126/science.108677

    NIN-like protein7 and PROTEOLYSIS6 functional interaction enhances tolerance to sucrose, ABA, and submergence

    Full text link
    [EN] Nitrate (NO3) assimilation and signaling regulate plant growth through the relevant function of the transcription factor NIN-like Protein7 (NLP7). NO3 is also the main source for plants to produce nitric oxide (NO), which regulates growth and stress responses. NO-mediated regulation requires efficient sensing via the PROTEOLYSIS6 (PRT6)-mediated proteasome-triggered degradation of group VII of ethylene response transcription factors through the Cys/Arg N-degron pathway. The convergence of NO3 signaling and N-degron proteolysis on NO-mediated regulation remains largely unknown. Here, we investigated the functional interaction between NLP7 and PRT6 using Arabidopsis (Arabidopsis thaliana) double prt6 nlp7 mutant plants as well as complementation lines overexpressing NLP7 in different mutant genetic backgrounds. prt6 nlp7 mutant plants displayed several potentiated prt6 characteristic phenotypes, including slower vegetative growth, increased NO content, and diminished tolerance to abiotic stresses such as high-sucrose concentration, abscisic acid, and hypoxia-reoxygenation. Although NLP7 has an N-terminus that could be targeted by the N-degron proteolytic pathway, it was not a PRT6 substrate. The potential PRT6- and NO-regulated nucleocytoplasmic translocation of NLP7, which is likely modulated by posttranslational modifications, is proposed to act as a regulatory loop to control NO homeostasis and action.This work was supported by MINECO from Spain grant (BIO2017-82945-P), CSIC (2020AEP055), Generalitat Valenciana (PROMETEO/2019/021 grant), and FEDER funds from European Union.Castillo López Del Toro, MC.; Costa-Broseta, Á.; Gayubas, B.; Leon Ramos, J. (2021). NIN-like protein7 and PROTEOLYSIS6 functional interaction enhances tolerance to sucrose, ABA, and submergence. Plant Physiology. 187(4):2731-2748. https://doi.org/10.1093/plphys/kiab38227312748187

    Nitric oxide deficiency decreases C-repeat binding factor-dependent and -independent induction of cold acclimation

    Full text link
    [EN] Plant tolerance to freezing temperatures is governed by endogenous components and environmental factors. Exposure to low non-freezing temperatures is a key factor in the induction of freezing tolerance in the process called cold acclimation. The role of nitric oxide (NO) in cold acclimation was explored in Arabidopsis using triple nia1nia2noa1-2 mutants that are impaired in the nitrate-dependent and nitrate-independent pathways of NO production, and are thus NO deficient. Here, we demonstrate that cold-induced NO accumulation is required to promote the full cold acclimation response through C-repeat Binding Factor (CBF)-dependent gene expression, as well as the CBF-independent expression of other cold-responsive genes such as Oxidation-Related Zinc Finger 2 (ZF/OZF2). NO deficiency also altered abscisic acid perception and signaling and the cold-induced production of anthocyanins, which are additional factors involved in cold acclimation.We thank Isabel Lopez-Diaz and Esther Carrera for the hormone quantification carried out at the Plant Hormone Quantification Service, IBMCP, Valencia, Spain. This work was supported by grants from MINECO of Spain Government and FEDER EU funds [BIO2014-56067-P, BIO2017-82945-P to JL and BIO2016-79187-R to JS].Costa-Broseta, Á.; Perea-Resa, C.; Castillo, M.; Ruíz, MF.; Salinas, J.; Leon Ramos, J. (2019). Nitric oxide deficiency decreases C-repeat binding factor-dependent and -independent induction of cold acclimation. Journal of Experimental Botany. 70(12):3283-3296. https://doi.org/10.1093/jxb/erz115S328332967012Adams, S., & Carré, I. A. (2011). Downstream of the plant circadian clock: output pathways for the control of physiology and development. Essays in Biochemistry, 49, 53-69. doi:10.1042/bse0490053Arakawa, T., & Timasheff, S. N. (1982). Stabilization of protein structure by sugars. Biochemistry, 21(25), 6536-6544. doi:10.1021/bi00268a033Astier, J., & Lindermayr, C. (2012). Nitric Oxide-Dependent Posttranslational Modification in Plants: An Update. International Journal of Molecular Sciences, 13(12), 15193-15208. doi:10.3390/ijms131115193Atamian, H. S., & Harmer, S. L. (2016). Circadian regulation of hormone signaling and plant physiology. Plant Molecular Biology, 91(6), 691-702. doi:10.1007/s11103-016-0477-4Barrero-Gil, J., & Salinas, J. (2013). Post-translational regulation of cold acclimation response. Plant Science, 205-206, 48-54. doi:10.1016/j.plantsci.2013.01.008Borevitz, J. O., Xia, Y., Blount, J., Dixon, R. A., & Lamb, C. (2000). Activation Tagging Identifies a Conserved MYB Regulator of Phenylpropanoid Biosynthesis. The Plant Cell, 12(12), 2383-2393. doi:10.1105/tpc.12.12.2383Cantrel, C., Vazquez, T., Puyaubert, J., Rezé, N., Lesch, M., Kaiser, W. M., … Baudouin, E. (2010). Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytologist, 189(2), 415-427. doi:10.1111/j.1469-8137.2010.03500.xCastillo, M. C., & León, J. (2008). Expression of the β-oxidation gene 3-ketoacyl-CoA thiolase 2 (KAT2) is required for the timely onset of natural and dark-induced leaf senescence in Arabidopsis. Journal of Experimental Botany, 59(8), 2171-2179. doi:10.1093/jxb/ern079Castillo, M.-C., Lozano-Juste, J., González-Guzmán, M., Rodriguez, L., Rodriguez, P. L., & León, J. (2015). Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Science Signaling, 8(392), ra89-ra89. doi:10.1126/scisignal.aaa7981Catala, R., Medina, J., & Salinas, J. (2011). Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proceedings of the National Academy of Sciences, 108(39), 16475-16480. doi:10.1073/pnas.1107161108Chen, M., & Thelen, J. J. (2016). Acyl-lipid desaturase 1primes cold acclimation response inArabidopsis. Physiologia Plantarum, 158(1), 11-22. doi:10.1111/ppl.12448Costa-Broseta, Á., Perea-Resa, C., Castillo, M.-C., Ruíz, M. F., Salinas, J., & León, J. (2018). Nitric Oxide Controls Constitutive Freezing Tolerance in Arabidopsis by Attenuating the Levels of Osmoprotectants, Stress-Related Hormones and Anthocyanins. Scientific Reports, 8(1). doi:10.1038/s41598-018-27668-8Cuevas, J. C., López-Cobollo, R., Alcázar, R., Zarza, X., Koncz, C., Altabella, T., … Ferrando, A. (2008). Putrescine Is Involved in Arabidopsis Freezing Tolerance and Cold Acclimation by Regulating Abscisic Acid Levels in Response to Low Temperature. Plant Physiology, 148(2), 1094-1105. doi:10.1104/pp.108.122945Diaz, C., Saliba-Colombani, V., Loudet, O., Belluomo, P., Moreau, L., Daniel-Vedele, F., … Masclaux-Daubresse, C. (2006). Leaf Yellowing and Anthocyanin Accumulation are Two Genetically Independent Strategies in Response to Nitrogen Limitation in Arabidopsis thaliana. Plant and Cell Physiology, 47(1), 74-83. doi:10.1093/pcp/pci225Eremina, M., Unterholzner, S. J., Rathnayake, A. I., Castellanos, M., Khan, M., Kugler, K. G., … Poppenberger, B. (2016). Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants. Proceedings of the National Academy of Sciences, 113(40), E5982-E5991. doi:10.1073/pnas.1611477113Fan, J., Chen, K., Amombo, E., Hu, Z., Chen, L., & Fu, J. (2015). Physiological and Molecular Mechanism of Nitric Oxide (NO) Involved in Bermudagrass Response to Cold Stress. PLOS ONE, 10(7), e0132991. doi:10.1371/journal.pone.0132991Guo, F.-Q. (2003). Identification of a Plant Nitric Oxide Synthase Gene Involved in Hormonal Signaling. Science, 302(5642), 100-103. doi:10.1126/science.1086770Hannah, M. A., Heyer, A. G., & Hincha, D. K. (2005). A Global Survey of Gene Regulation during Cold Acclimation in Arabidopsis thaliana. PLoS Genetics, 1(2), e26. doi:10.1371/journal.pgen.0010026Igamberdiev, A. U., Ratcliffe, R. G., & Gupta, K. J. (2014). Plant mitochondria: Source and target for nitric oxide. Mitochondrion, 19, 329-333. doi:10.1016/j.mito.2014.02.003Jensen, M. K., Lindemose, S., de Masi, F., Reimer, J. J., Nielsen, M., Perera, V., … Skriver, K. (2013). ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana. FEBS Open Bio, 3(1), 321-327. doi:10.1016/j.fob.2013.07.006Jeon, J., Kim, N. Y., Kim, S., Kang, N. Y., Novák, O., Ku, S.-J., … Kim, J. (2010). A Subset of Cytokinin Two-component Signaling System Plays a Role in Cold Temperature Stress Response in Arabidopsis. Journal of Biological Chemistry, 285(30), 23371-23386. doi:10.1074/jbc.m109.096644Kakei, Y., & Shimada, Y. (2014). AtCAST3.0 Update: A Web-Based Tool for Analysis of Transcriptome Data by Searching Similarities in Gene Expression Profiles. Plant and Cell Physiology, 56(1), e7-e7. doi:10.1093/pcp/pcu174Krol, M., Gray, G. R., Huner, N. P. A., Hurry, V. M., Öquist, G., & Malek, L. (1995). Low-temperature stress and photoperiod affect an increased tolerance to photoinhibition in Pinus banksiana seedlings. Canadian Journal of Botany, 73(8), 1119-1127. doi:10.1139/b95-122Lee, H. G., & Seo, P. J. (2015). The MYB 96– HHP module integrates cold and abscisic acid signaling to activate the CBF – COR pathway in Arabidopsis. The Plant Journal, 82(6), 962-977. doi:10.1111/tpj.12866León, J., Castillo, M. C., Coego, A., Lozano-Juste, J., & Mir, R. (2013). Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress. Journal of Experimental Botany, 65(4), 907-921. doi:10.1093/jxb/ert454Li, D., Li, Y., Zhang, L., Wang, X., Zhao, Z., Tao, Z., … Yang, Y. (2014). Arabidopsis ABA Receptor RCAR1/PYL9 Interacts with an R2R3-Type MYB Transcription Factor, AtMYB44. International Journal of Molecular Sciences, 15(5), 8473-8490. doi:10.3390/ijms15058473Lozano-Juste, J., Colom-Moreno, R., & León, J. (2011). In vivo protein tyrosine nitration in Arabidopsis thaliana. Journal of Experimental Botany, 62(10), 3501-3517. doi:10.1093/jxb/err042Lozano-Juste, J., & León, J. (2009). Enhanced Abscisic Acid-Mediated Responses in nia1nia2noa1-2 Triple Mutant Impaired in NIA/NR- and AtNOA1-Dependent Nitric Oxide Biosynthesis in Arabidopsis. Plant Physiology, 152(2), 891-903. doi:10.1104/pp.109.148023Morishita, T., Kojima, Y., Maruta, T., Nishizawa-Yokoi, A., Yabuta, Y., & Shigeoka, S. (2009). Arabidopsis NAC Transcription Factor, ANAC078, Regulates Flavonoid Biosynthesis under High-light. Plant and Cell Physiology, 50(12), 2210-2222. doi:10.1093/pcp/pcp159Nakashima, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2014). The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00170Park, S., Lee, C.-M., Doherty, C. J., Gilmour, S. J., Kim, Y., & Thomashow, M. F. (2015). Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. The Plant Journal, 82(2), 193-207. doi:10.1111/tpj.12796Perea-Resa, C., Rodríguez-Milla, M. A., Iniesto, E., Rubio, V., & Salinas, J. (2017). Prefoldins Negatively Regulate Cold Acclimation in Arabidopsis thaliana by Promoting Nuclear Proteasome-Mediated HY5 Degradation. Molecular Plant, 10(6), 791-804. doi:10.1016/j.molp.2017.03.012Persak, H., & Pitzschke, A. (2014). Dominant Repression by Arabidopsis Transcription Factor MYB44 Causes Oxidative Damage and Hypersensitivity to Abiotic Stress. International Journal of Molecular Sciences, 15(2), 2517-2537. doi:10.3390/ijms15022517Petroni, K., & Tonelli, C. (2011). Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Science, 181(3), 219-229. doi:10.1016/j.plantsci.2011.05.009PUYAUBERT, J., & BAUDOUIN, E. (2014). New clues for a cold case: nitric oxide response to low temperature. Plant, Cell & Environment, 37(12), 2623-2630. doi:10.1111/pce.12329Rahman, A. (2012). Auxin: a regulator of cold stress response. Physiologia Plantarum, 147(1), 28-35. doi:10.1111/j.1399-3054.2012.01617.xResponses of Poplar to Chilling Temperatures: Proteomic and Physiological Aspects. (2004). Plant Biology, 6(1), 81-90. doi:10.1055/s-2004-815733Reyes-Diaz, M., Ulloa, N., Zuniga-Feest, A., Gutierrez, A., Gidekel, M., Alberdi, M., … Bravo, L. A. (2006). Arabidopsis thaliana avoids freezing by supercooling. Journal of Experimental Botany, 57(14), 3687-3696. doi:10.1093/jxb/erl125Richter, R., Bastakis, E., & Schwechheimer, C. (2013). Cross-Repressive Interactions between SOC1 and the GATAs GNC and GNL/CGA1 in the Control of Greening, Cold Tolerance, and Flowering Time in Arabidopsis. Plant Physiology, 162(4), 1992-2004. doi:10.1104/pp.113.219238Rubin, G., Tohge, T., Matsuda, F., Saito, K., & Scheible, W.-R. (2009). Members of the LBD Family of Transcription Factors Repress Anthocyanin Synthesis and Affect Additional Nitrogen Responses in Arabidopsis. The Plant Cell, 21(11), 3567-3584. doi:10.1105/tpc.109.067041Schulz, E., Tohge, T., Zuther, E., Fernie, A. R., & Hincha, D. K. (2016). Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Scientific Reports, 6(1). doi:10.1038/srep34027Seo, M., Jikumaru, Y., & Kamiya, Y. (2011). Profiling of Hormones and Related Metabolites in Seed Dormancy and Germination Studies. Methods in Molecular Biology, 99-111. doi:10.1007/978-1-61779-231-1_7Shi, Y., Ding, Y., & Yang, S. (2018). Molecular Regulation of CBF Signaling in Cold Acclimation. Trends in Plant Science, 23(7), 623-637. doi:10.1016/j.tplants.2018.04.002Solfanelli, C., Poggi, A., Loreti, E., Alpi, A., & Perata, P. (2005). Sucrose-Specific Induction of the Anthocyanin Biosynthetic Pathway in Arabidopsis. Plant Physiology, 140(2), 637-646. doi:10.1104/pp.105.072579Soubeyrand, E., Basteau, C., Hilbert, G., van Leeuwen, C., Delrot, S., & Gomès, E. (2014). Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet-Sauvignon berries. Phytochemistry, 103, 38-49. doi:10.1016/j.phytochem.2014.03.024Takahashi, D., Kawamura, Y., & Uemura, M. (2016). Cold acclimation is accompanied by complex responses of glycosylphosphatidylinositol (GPI)-anchored proteins in Arabidopsis. Journal of Experimental Botany, 67(17), 5203-5215. doi:10.1093/jxb/erw279Thomashow, M. F. (1999). PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology, 50(1), 571-599. doi:10.1146/annurev.arplant.50.1.571Wang, X., Bian, Y., Cheng, K., Zou, H., Sun, S. S.-M., & He, J.-X. (2012). A Comprehensive Differential Proteomic Study of Nitrate Deprivation inArabidopsisReveals Complex Regulatory Networks of Plant Nitrogen Responses. Journal of Proteome Research, 11(4), 2301-2315. doi:10.1021/pr2010764Weiser, C. J. (1970). Cold Resistance and Injury in Woody Plants: Knowledge of hardy plant adaptations to freezing stress may help us to reduce winter damage. Science, 169(3952), 1269-1278. doi:10.1126/science.169.3952.1269Zhai, H., Bai, X., Zhu, Y., Li, Y., Cai, H., Ji, W., … Li, J. (2010). A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis. Biochemical and Biophysical Research Communications, 394(4), 1018-1023. doi:10.1016/j.bbrc.2010.03.114Zhao, M.-G., Chen, L., Zhang, L.-L., & Zhang, W.-H. (2009). Nitric Reductase-Dependent Nitric Oxide Production Is Involved in Cold Acclimation and Freezing Tolerance in Arabidopsis. Plant Physiology, 151(2), 755-767. doi:10.1104/pp.109.140996Zhao, R., Sheng, J., Lv, S., Zheng, Y., Zhang, J., Yu, M., & Shen, L. (2011). Nitric oxide participates in the regulation of LeCBF1 gene expression and improves cold tolerance in harvested tomato fruit. Postharvest Biology and Technology, 62(2), 121-126. doi:10.1016/j.postharvbio.2011.05.01

    Nitric oxide responses in Arabidopsis hypocotyls are mediated by diverse phytohormone pathways

    Full text link
    [EN] Plants are often exposed to high levels of nitric oxide (NO) that affects development and stress-triggered responses. However, the way in which plants sense NO is still largely unknown. Here we combine the analysis of early changes in the transcriptome of plants exposed to a short acute pulse of exogenous NO with the identification of transcription factors (TFs) involved in NO sensing. The NO-responsive transcriptome was enriched in hormone homeostasis and signaling-related genes. To assess events involved in NO sensing in hypocotyls, we used a functional sensing assay based on the NO-induced inhibition of hypocotyl elongation in etiolated seedlings. Hormone-related mutants and the TRANSPLANTA collection of transgenic lines conditionally expressing Arabidopsis TFs were screened for NO-triggered hypocotyl shortening. These approaches allowed the identification of hormone-related TFs, ethylene perception and signaling, strigolactone biosynthesis and signaling, and salicylate production and accumulation that are essential for or modulate hypocotyl NO sensing. Moreover, NO inhibits hypocotyl elongation through the positive and negative regulation of some abscisic acid (ABA) receptors and transcripts encoding brassinosteroid signaling components thereby also implicating these hormones in NO sensing.This work was supported by grants BIO2014-56067-P and BIO2017-82945-P from the Spanish Ministry of Economy, Industry and Competitiveness and FEDER funds. We thank the Genomics Unit of the Centro Nacional de Biotecnologia (CNB-CSIC, Madrid, Spain) for microarray processing. We gratefully acknowledged the kind donation of mutant seeds: Roberto Solano and Andrea Chini (CNB, Madrid, Spain) for the jaz and myc mutants; Paul Verslues (Institute of Plant and Microbial Biology, Academia Sinica, Taiwan) for the hai mutants; Javier Agusti, Pablo Tornero, and Pedro Rodriguez (IBMCP, Valencia, Spain) for the max, sid2eds5nahG, and pyr/pyl mutants, respectively; and Hiroaki Fujii (University of Turku, Finland) for the snrk2.3 and 2.9 mutants.Castillo López Del Toro, MC.; Coego Gonzalez, A.; Costa-Broseta, Á.; Leon Ramos, J. (2018). Nitric oxide responses in Arabidopsis hypocotyls are mediated by diverse phytohormone pathways. Journal of Experimental Botany. 69(21):5265-5278. https://doi.org/10.1093/jxb/ery286S52655278692

    Identificación y caracterización funcional del transcriptoma regulado por óxido nítrico en A. thaliana

    Full text link
    [EN] Nitric oxide (NO) regulates developmental and stress-related plant processes through still largely undefined mechanisms. To study the effect of deficient NO biosynthesis on genome-wide Arabidopsis thaliana transcriptome, the nia1nia2noa1-2 mutant plants, impaired in the nitrate reductase (NR/NIA)- and nitric oxide associated 1 (NOA1)-related NO biosynthesis, were compared to wild type plants by using microarray analyses. Gene Ontology (GO) analyses on differentially expressed genes pointed to altered biosynthesis and metabolism of phenylpropanoids and amino acid derivatives. Besides, nia1nia2noa1-2 roots were hypersensitive to ABA, ethylene and cytokinins and hyposensitive to auxins. Further microarray-based analyses of parental nia1nia2 and noa1-2 mutants versus Col-0 plants allowed defining a core of 66 genes, 46 down-regulated and 20 up-regulated in all tested NO-deficient plants. The in silico analyses of their gene expression patterns and the lack of evidence in phenotypic assays of a transcription factor among these genes being a master regulator of NO-regulated responses in Arabidopsis suggest an extensive co-regulation between NO and ethylene and anti-regulation with ABA, auxins, salicylates and cytokinins, pointing to a key role of NO in hormone signaling.[ES] El óxido nítrico (NO) regula procesos de desarrollo y relacionados con el estrés en plantas a través de mecanismos en gran medida aún por definir. Para estudiar el efecto de la biosíntesis deficiente de NO en el transcriptoma completo de Arabidopsis thaliana, las plantas mutantes nia1nia2noa1-2, con la biosíntesis de NO a través de la nitrato reductasa (NR/NIA) y de la proteína asociada a óxido nítrico (NOA1) bloqueadas, se compararon con plantas silvestres mediante análisis de micromatrices. Los análisis de ontologías génicas (GO) en los genes diferencialmente expresados desvelaron alteraciones en la biosíntesis y el metabolismo de derivados de aminoácidos y fenilpropanoides. Además, las raíces de nia1nia2no1-2 resultaron ser hipersensibles a ABA, etileno y citoquininas e hiposensibles a auxinas. Análisis adicionales de micromatrices de los parentales mutantes nia1nia2 y noa1-2 contra plantas Col-0 permitieron definir un núcleo de 66 genes, 46 regulados a la baja y 20 a la alza, en todas las plantas testadas deficientes en NO. Los análisis in silico de sus patrones de expresión génica y la falta de evidencia en ensayos fenotípicos de que alguno de los factores e transcripción entre estos genes se comporte como un regulador maestro de la respuesta a NO en Arabidopsis sugieren una extensa corregulación entre el NO y el etileno y una anti-regulación con ABA, auxinas, salicilatos y citoquininas, apuntando a un papel destacada del NO en la señalización hormonal.Costa Broseta, Á. (2015). Identificación y caracterización funcional del transcriptoma regulado por óxido nítrico en A. thaliana. http://hdl.handle.net/10251/6422
    corecore